
DMA Programming Tutorial 1

DMA Programming

Intro

DMA or Direct Memory Access gives us the ability to move large amounts of memory from one place
to another VERY quickly. It takes some CPU usage to set up the DMA tranfer, but after that, the DMA
and the recipient finish without involving the CPU! This is what makes sound playback at 44khz a
reality. Without DMA we’d be struggling to do anything while the sound was playing! Any computer
will have 2 DMAC or 8237 DMA Controllers in which 1 is used for 8 bit transfers and the other for 16
bit transfers. If you are reading (or attempting to read) this tutorial, I’m going to assume that you are
familiar with writing to ports, if you’re not this might be a little confusing (if not impossible). Since we
know that a normal computer has 2 DMAC’s lets take a look at which ports we will be using to
communicate with them!

DMAC Ports

All these ports, Address and Count, what the heck does it all mean! Later on when we set up the DMA
transfer we will be telling the DMA where our memory is comming from, that’s where the address port
comes into use. We won’t need to tell it to go the Sound Blaster card, the hardware will do that for us.
We will also need to tell it how much to transfer, that’s where the count port comes in!

rellortnoC sserddAO/I #lennahC noitcnuF

tib-81AMD
evalS

00x0 0 troPsserddA
10x0 0 troPtnuoC
20x0 1 troPsserddA
30x0 1 troPtnuoC
40x0 2 troPsserddA
50x0 2 troPtnuoC
60x0 3 troPsserddA
70x0 3 troPtnuoC

tib-612AMD
retsaM

0Cx0 4 troPsserddA
2Cx0 4 troPtnuoC
4Cx0 5 troPsserddA
6Cx0 5 troPtnuoC
8Cx0 6 troPsserddA
ACx0 6 troPtnuoC
CCx0 7 troPsserddA
ECx0 7 troPtnuoC

DMA Programming Tutorial 2

To review, we have 8 DMA Channels total although we can’t use all of them because some system
areas like updating RAM use some of the channels. Each channel has its own address and count ports
to tell it where we are going to be getting memory from and also telling it how much to send! When
telling the DMAC where we are going to fetch the memory from we also need to tell it on which
memory page it is located, and those are set through a differen’t set of ports, let’s take a gander!

Page Registers

Here’s our pretty listing of the ports we have to
communicate with to tell our DMA channel
which page the memory we are moving resides.
We need page information to be able to move
64k in one shot! Notice that DMA channel 4 is
red, this is because it is unuseable. Why you
ask? Because this is where the 8 bit irq is
connected (cascaded) to it! Don’t worry yet
about calculating the page of your memory
transfer, we’ll do that later :) Let’s move on to
mode settings! What!? Did you think that each
DMA transfer was the same! How dare you!

Mode Bit Assignments

WOW, talk about a lot of stuff to look
at! All we need to know is that each
bit in this byte represents a choice
on how we are going to have DMA
transfer the memory. I don’t have the
HD Space, nor the information
available to explain every option. We
are going to choose the following
options for setting up the DMA trans-
fer to the Sound Blaster: Demand
Mode, Address Increment, Single
Cycle(for now), Write Transfer and
finally we are going to set the DMA
channel accordingly. These are the
most popular options for what we are
using DMA for. Now that we can set
a byte to what modes we are going
to use, lets discuss where we are go-
ing to be sending it!

We will send our control byte (if you

CAMD sserddA lennahCdnanoitcnuF

evalStiB8

78x0 egaP0lennahCAMD

38x0 egaP1lennahCAMD

18x0 egaP2lennahCAMD

18x0 egaP3lennahCAMD

retsaMtiB61

F8x0 egaP4lennahCAMD

B8x0 egaP5lennahCAMD

98x0 egaP6lennahCAMD

A8x0 egaP7lennahCAMD

stiB noitcnuF
6:7stiBnoitceleSedoM

0 0 detceleSedoMdnameD
0 1 detceleSedoMelgniS
1 0 detceleSedoMkcolB
1 1 detceleSedoMedacsaC

5tiBtnemerceD/tnemercnIsserddA
0 detceleStnemercnIsserddA
1 detceleStnemerceDsserddA

4tiBelbanEnoitazilaitnI-otuA
0 edoMAMDelcyCelgniS
1 edoMnoitazilaitinI-otuA

2:3stiBepyTrefsnarT
0 0 refsnarTyfireV
0 1 refsnarTetirW
1 0 refsnarTdaeR
1 1 lagellI

0:1stiBnoitceleSlennahC
0 0)4(0lennahC
0 1)5(1lennahC
1 0)6(2lennahC
1 1)7(3lennahC

DMA Programming Tutorial 3

will) to one of these ports. Use 0x0B if you are programming the 8 Bit DMAC and the Channel Selec-
tion Bits will represent channels 0-3. Use 0xD6 if you are programming the 16 Bit DMAC and the
Channel Selection Bits will represent channels 4-7! We are just about finished going through the DMAC
ports, let’s quickly go over 2 other ones!

Mask Register Control Bits

This is a control byte sorta like when we set a byte for our mode settings.
All we have to do to disable or enable a DMA Channel, is to choose the bit value for bit 2 and set
the correct DMA channel! As soon as we write this byte to the Mask Register, our DMA Channel
will be enable/disabled.

Here we are going to send our control byte to port 0x0A if our DMA channel is 3-0 or use port 0xD4 if
our DMA channel is 4-7! We mostly want to disable the channel just before we start re-programming
it.

Clear Byte Pointer Flip-Flop

Hey! Where’s our byte layout for this port..hmmm Maybe because we can write ANYTHING to it!
Thats right! We have to clear the Byte Pointer Flip Flop just after we disable our DMA channel for re-
programming! That’s all thereis to it!

edoMetirW
retsigeR

retsigeR noitarepO CAMD
B0x0 etirW CAMDtiB8
6Dx0 etirW CAMDtiB61

stiB noitcnuF
0 0 0 0 0 0otteS,desunU

2tiBksaMraelC/teS
0)lennahCelbanE(tiBksaMraelC
1)lennahCelbasiD(tiBksaMteS

0:1stiBnoitceleSlennahC
0 0)4(0lennahCAMD
0 1)5(1lennahCAMD
1 0)6(2lennahCAMD
1 1)7(3lennahCAMD

ksaMelgniS
retsigeR

retsigeR noitarepO CAMD
A0x0 etirW CAMDtiB8
4Dx0 etirW CAMDtiB61

etyBraelC
F-FretnioP

retsigeR noitarepO CAMD
C0x0 etirW CAMDtiB8
8Dx0 etirW CAMDtiB61

DMA Programming Tutorial 4

Up to this point we’ve discussed what ports we are going to communicate with and under what circum-
stances. Lets start building our DMA class and finally go through the steps to program a full DMA
transfer!

The DMA Class

Finally getting to the actual code. If you’re like me you probably glanced (at best) through those port
listings. GO BACK!! It will really help you out if you just take 5 minutes and not just read what the
ports do but read it until it makes sence! Realize that every port has a special purpose and know which
onces need specially aligned bits and such. OK! Now let’s get down to defining our DMA Class! Let’s
go over the header file to get a brief look at what we are going to be dealing with.

 #ifndef DMA_H__BLAH
 #define DMA_H__BLAH
 #ifndef LoByte
 #define LoByte(x)(short)(x & 0x00FF)
 #endif
 #ifndef HiByte
 #define HiByte(x)(short)((x&0xFF00)>>8)
 #endif
 #ifndef uchar
 #define uchar unsigned char
 #endif
 //Control Byte bit definitions
 //Mode Selection Bits 7:6
 #define DemandMode 0 //00
 #define SingleMode 64 //01
 #define BlockMode 128 //10
 #define CascadeMode 192 //11
 //Address Increment/Decrement bit 5
 #define AddressDecrement 32 //1
 #define AddressIncrement 0 //0
 //AutoInitialization enable bit 4
 #define AutoInit 16 //1
 #define SingleCycle 0 //0
 //Transfer Type bits 3:2
 #define VerifyTransfer 0 //00
 #define WriteTransfer 4 //01
 #define ReadTransfer 8 //10
 //Channel Bits 1:0
 #define BUFFSIZE 8192
 #define HALFBUFFSIZE 4096
 #include <dpmi.h>
 #include <go32.h>

header file cont.

DMA Programming Tutorial 5

 class DMA
 { public:
 DMA();
 ~DMA();
 void SetControlByteMask(uchar,uchar,uchar,uchar);
 void SetControlByte();
 void SetDMAChannel(uchar);
 void SetPorts();
 void EnableChannel();
 void DisableChannel();
 void ClearFlipFlop();
 void SetTransferLength(unsigned short);
 void AllocateDMABuffer();
 void SetBufferInfo();
 void *MK_FP(unsigned long,unsigned long);

 uchar DMAChannel, ModeByte, ControlByte, ControlByteMask, *DMABuffer ;
 uchar DMAAddrPort,DMACountPort,DMAPagePort, DMAMaskReg, DMAClearReg,
 DMAModeReg ;
 short TransferLength, page ;
 _go32_dpmi_seginfo SegInfo;
 unsigned short masksave ;
 unsigned long phys ;
 };
 #endif

Ok now this might take a little explaining. Lets do the usual top to bottom! First the entire header is
enclose inside a #ifdef statement to make sure that no matter what this header will be defined only
once. Now remember those special Mode Register Bits that tell the DMA how to transfer the memory?
I defined each option and gave it a value, you’ll see what those will do later on :) We declare our
BUFFSIZE and HALFBUFFSIZE variables which represent the size of our DMA buffer! We then go
into our function listing and then into our variables. Here we define all ports of type unsigned char and
define some variables we know we’ll need later on.Notice that we really don’t have a lot of function
definitions. I guess you can attribute that to my keen intellect and class building know-how (pause to
reflect on my greatness) Ok enough :) Lets start with our Constructor and Destructor.

DMA::DMA()
{ DMAChannel=100;
 ModeByte=ControlByte=ControlByteMask=
 DMAAddrPort=DMACountPort=DMAPagePort=DMAMaskReg=DMAClearReg=DMAModeReg=0;
 EightBit=1;
 AllocateDMABuffer();
 }
DMA::~DMA()
{ _go32_dpmi_free_dos_memory(&SegInfo);
}

DMA Programming Tutorial 6

void DMA::AllocateDMABuffer()
{ SegInfo.size=(BUFFSIZE*2)+15/16;
 _go32_dpmi_allocate_dos_memory(&SegInfo);
 phys=SegInfo.rm_segment<<4;

 if((phys>>16)!=((phys+BUFFSIZE)>>16))
 {phys+=BUFFSIZE;
 cout<<“Hit Page Division!\n”;//doing page checking right here
 }
page = (long)(phys>>16);
 memset((unsigned char *)MK_FP(phys>>4,0),0,BUFFSIZE);
}

Here we initialize all our variables to 0 except for DMAChannel. We intialize that to 100 because 0 is
a real DMA channel number. Finally we call AllocateDMABuffer(). The constuctor simply de-allo-
cates the DOS memory we allocated with AllocateDMABuffer().

The AllocateDMABuffer certainly looks odd! In order to do DMA transfers from a buffer to a piece of
hardware, the buffer must reside in lower memory and NOT pass over a 64k page! This is an absolute
requirement. To make sure of both we use the _go32 function to allocate some DOS memory according
to the function requirements. We attempt to allocate 2x what we need in case we do overlap a boundary
we should just be able to add BUFFSIZE onto it and have a value buffer! We then go into an if state-
ment that checks to see if our buffer overlaps the page boundary. Finally we initialize our buffer to all
0’s! Next lets setting the proper port numbers!

void DMA::SetDMAChannel(unsigned char channel)
{ if(channel >7)
 cout<<“Invalid DMA Channel!\n”;
 else
 DMAChannel=channel;
 SetPorts();
}

void DMA::SetPorts()
{switch(DMAChannel)
 { case 0: DMAAddrPort=0x00; DMACountPort=0x01; DMAPagePort=0x87; break;
 case 1: DMAAddrPort=0x02; DMACountPort=0x03; DMAPagePort=0x83; break;
 case 2: DMAAddrPort=0x04; DMACountPort=0x05; DMAPagePort=0x81; break;
 case 3: DMAAddrPort=0x06; DMACountPort=0x07; DMAPagePort=0x82; break;
 // 16 bit channels
 case 4: DMAAddrPort=0xC0; DMACountPort=0xC2; DMAPagePort=0x8F; break;
 case 5: DMAAddrPort=0xC4; DMACountPort=0xC6; DMAPagePort=0x8B; break;
 case 6: DMAAddrPort=0xC8; DMACountPort=0xCA; DMAPagePort=0x89; break;
 case 7: DMAAddrPort=0xCC; DMACountPort=0xCE; DMAPagePort=0x8A; break;
 default: cout<<“Invalid DMA Channel!\n”;break;
 }

DMA Programming Tutorial 7

function cont.
 if(DMAChannel < 4)
 {DMAMaskReg = 0x0A;
 DMAClearReg= 0x0C;
 DMAModeReg = 0x0B;
 }
 else
 {//16 bit channel
 DMAMaskReg = 0xD4;
 DMAClearReg = 0xD8;
 DMAModeReg = 0xD6;
 DMAChannel-=4;
 EightBit=0;
 }
}
To set all the proper ports you have to call one little function with 1 argument :) I rule :) Just call
SetDMAChannel with the proper channel and everything will be set! Remember that each DMA chan-
nels has its own address, count and page ports. We set those according to what DMA channel they
specifically passed. Also remember that the Mask, Clear and Mode Registers are dependent upon
which DMAC we are using, the 8 Bit Slave or the 16 Bit Master. Knowing if the DMA channel is under
4 is all we need to set those! As soon as the SetDMAChannel function is called, all ports are assigned
correctly :) When doing a 16 bit transer, we have to subtract 4 from the DMA channel in order for us to
set it up. Notice we do this AFTER we have set the appropriate ports. Next up, let’s go over setting the
proper mode settings.

void DMA::SetControlByteMask(uchar ModeSelect,uchar AIncDec,uchar AIBit,uchar TransferB)
{ ControlByteMask=(ModeSelect+AIncDec+AIBit+TransferB);
 ControlByteMask+=DMAChannel;
}

void DMA::SetControlByte()
{ ControlByte|=ControlByteMask;
 outp(DMAModeReg,ControlByte);
}

In order to set all those complicated bits for the Mode Settings, all we have to do is call the
SetControlByteMask function and use those #defines in our header file to fill it in! So if we were going
to set our normal transfer settings it would look something like this:

SetControlByteMask(DemandMode,AddressIncrement,SingleCycle,ReadTransfer);

After calling this we can call SetControlByte when we are ready to actually program the DMA channel
with those settings! Please remember that before ANY functions can be called, we have to call
SetDMAChannel 1st. You will notice that the SetControlByteMask function utilizes that variable, urgo
it won’t work correctly if SetDMAChannel isn’t called! Next, let’s go over the other 2 simple registers.

DMA Programming Tutorial 8

void DMA::EnableChannel()
{ unsigned char mask=0;
 mask=DMAChannel;
 outp(DMAMaskReg,mask);
}

void DMA::DisableChannel()
{unsigned char mask=0;
 mask=DMAChannel;
 mask|=4;
 outp(DMAMaskReg,mask);
}

Now tell me if these don’t look simple! Just as they say, both are used to disable and enable the current
DMA channel! Remember the only difference between the port being set on and being set off is bit 3!
Next up is the function to clear the Byte Pointer Flip-Flop.

void DMA::ClearFlipFlop()
{ outp(DMAClearReg,0x0000);
}

Now it just isn’t going to get any easier than this. SetPorts made sure that DMAClearReg was set to
the correct port, and hey let’s just right any old number, why not 0! Next, let’s find out how to send
our buffersize to the Count Port.

void DMA::SetTransferLength(unsigned short length)
{ TransferLength=length;
 outp(DMACountPort,LoByte(length-1));//Low byte of buffersize
 outp(DMACountPort,HiByte(length-1));//High byte of buffersize
}

To tell the DMAC how much we need to transfer we have to communicate with the proper Count Port.
We know that DMACountPort has been set correctly in SetPorts(). We just have to send the low byte of
the transfersize-1, then send the high byte of the transfersize-1! Now the DMAC knows how much it is
going to be transfering! Now let’s tell it where to get the stuff from!

void DMA::SetBufferInfo()
{ unsigned long offs =(short)(phys & 0xffff);
 if(!EightBit)
 { offs=(short)(phys>>1 & 0xffff);
 }
 outp(DMAPagePort,page);
 outp(DMAAddrPort,offs&0xff);
 outp(DMAAddrPort,offs>>8);
 }

DMA Programming Tutorial 9

Here we are communicating with the DMA Address and DMA Page ports. Remember that phys was
set in the AllocateDMABuffer function. We first send the low byte then follow it up with the high byte
of our address. Then we finally send the page to the Page Port. If we are doing a 16 bit transfer, then we
have to divide the physical address by 2 or just bitshift it once to the right.

void * DMA::MK_FP(unsigned long seg, unsigned long ofs)
{ if(!(_crt0_startup_flags & _CRT0_FLAG_NEARPTR))
 if(!__djgpp_nearptr_enable())
 return (void*)0;
 return (void *)(seg*16+ofs+__djgpp_conventional_base);
 }
I use this function to create a normal unsigned char pointer that I can use in simple string functions
instead of having to deal with all hassle associated with allocating memory from DOS. A hassle in my
opinion anyways :) Well we’ve covered the ports and what they represent, we’ve gone over the sup-
porting source code that actually DOES the interfacing and communicating, now lets get a sample of
how we can really use these functions!

void SetupDMA()
{disable();
 SetDMAChannel(OURDMACHANNEL);
 DisableChannel(); //Disable DMA channel while programming it
 SetControlByteMask(DemandMode,AddressIncrement,SingleCycle,WriteTransfer);
 SetControlByte(); //Put into 8-bit Single Cycle mode
 ClearFlipFlop(); //Clear Flip-Flop
 SetBufferInfo();
 SetTransferLength(BUFFSIZE);
 enable(); //enable interrupts
 EnableChannel(); //enable DMA channel
 }

Ahhh finally success! We set the DMA channel, Disable it since we are about to program it, set our
mode byte mask, set the actual control byte on the DMA, clear the flip-flop, send the location of our
DMA buffer, tell the DMA how much to transfer, and finally enable the channel and we are ready to
ROCK! This is the fundamental sequence to program a DMA channel!! Thanks for wallowing through
this tutorial, it took about 7 hours to create so I hope it was all worth it! If you have any comments,
questions, rude remarks, need to pass gas whatever...give me some feedback!!

Contact Information
I just wanted to mention that everything here is copyrighted, feel free to distribute this document to
anyone you want, just don’t modify it! You can get a hold of me through my website or direct email.
Please feel free to email me about anything. I can’t guarantee that I’ll be of ANY help, but I’ll sure
give it a try :-)

Email : deltener@mindtremors.com
Webpage : http://www.inversereality.org

Created by

Justin Deltener

